

Enhancing Arousal and Sleep Scoring in In-home EEG Signals using Multitask Learning

Juan Carlos Neira Almanza, Leo Ota, Kazumasa Horie, Fusae Kawana, Toshio Kokubo, Masashi Yanagisawa, Hiroyuki Kitagawa.

Arousability, a key indicator of sleep disruption, is notoriously challenging to score. By utilizing an advanced AI technique known as multitask learning, we enhanced the accuracy of scoring arousability in in-home portable EEG recordings.

Introduction

- Previous research highlights a correlation between arousability and insufficient sleep.
- Portable in-home EEG devices, like InSomnograf by S'UIMIN, have been developed to enhance sleep monitoring.
- While AI models have achieved promising results in sleep scoring, arousal scoring remains less effective.

Multitask learning, which trains a model for both sleep and arousal simultaneously, has been proposed as a more effective approach.

Fig.1 Lack of Sleep

Fig.2 InSomnograf

Methodology

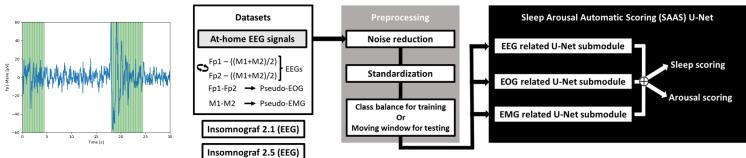


Fig.3 Analysis process of In-home EEG data with SAAS

- We analyzed two InSomnograf datasets: InSomnograf 2.1 and 2.5. Each one composed of four channels.
- Before the analysis, we preprocessed the signals, reducing the noise and balancing sleep stages with regards to arousal / not arousal epochs.
- Our model, named SAAS U-Net, allows us to obtain arousal and sleep scoring results.

Results & Discussion

InSomnograf phase 2.1 dataset arousal results (%)											
Method	Prec.	Sens.	Acc.	Spec.	F1	к	AUROC	AUPRC			
Single	76.4	57.0	91.1	97.0	65.3	60.3	89.5	72.8			
Multi.	81.2	61.3	92.2	97.6	69.8	65.5	85.8	72.9			
InSomnograf phase 2.5 dataset arousal results (%)											
Method	Prec.	Sens.	Acc.	Spec.	F1	к	AUROC	AUPRC			
-	1			1							
Single	73.2	64.8	91.7	96.1	68.8	64.0	90.5	73.7			

InS	omnogra	f phase 2	2.1 datas	et sleep r	esults (%)						
Method	Prec.	Sens.	Acc.	Spec.	F1	К					
Single	75.1	75.5	80.7	94.8	75.0	73.3					
Multi.	73.9	74.9	79.5	94.5	74.1	71.7					
InSomnograf phase 2.5 dataset sleep results (%)											
Method	Prec.	Sens.	Acc.	Spec.	F1	к					
Single	72.9	74.5	77.9	94.0	73.6	69.3					
Multi.	73.1	72.1	77.7	93.7	72.5	68.4					

 Our results show that multitask learning improves arousal scoring in portable in-home EEG but does not enhance sleep scoring.

- This may be due to the contextual information from sleep stages that aids arousal scoring, while the reverse effect is limited.
- We encourage further research on multitask learning for sleep evaluation and related conditions.

【お問い合わせ先】筑波大学産学連携企画課 E-mail:<u>event-sanren@un.tsukuba.ac.jp</u>